Critical role of Interface and perovskite lattice in high-efficiency and photostable solar cells

Olivier Durand 1, Wanyi Nie 2, Hsinhan Tsai 2 3, Reza Asadpour 4, Jean-Christophe Blanc 2, Fangze Liu 2, Constantinos C. Stoumpos 4, Joseph W. Strzalka 5, Jared Crochet 2, Pulickel M. Ajayan 3, Boubacar Traore 6, Mikael Kepenekian 6, Claudine Katan 6, Sergei Tretiak 7, Mercouri G. Kanatzidis 8, Muhammad Ashraf Alam 4, Jacky Even 1 and Aditya D. Mohite 2

1 UMR FOTON, CNRS, INSA-Rennes, F-35708 Rennes, France
2 Materials Physics and Application, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
3 Materials Science and Nano-engineering, Rice University, Houston, Texas 77005, United States
4 School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, USA
5 Argonne National Laboratory, Advanced Photon Source, Argonne, Illinois 60439, USA
6 Institut des Sciences Chimiques de Rennes, ISCR UMR 6226, CNRS, Université de Rennes 1, 35042 Rennes, France
7 Theoretical Chemistry and Molecular Physics Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
8 Department of Chemistry, Department of Materials Science and Engineering and Argonne-Northwestern Solar Energy Research (ANSER) Center, Northwestern University, Evanston, IL 60208, USA.

Hybrid perovskites have recently seen an unprecedented improvement in the power conversion efficiency in photovoltaics devices, and therefore are very promising materials for developing efficient and low-cost single junction solar cells [1-3]. However, a critical issue is the limited understanding of the correlation between the degree of crystallinity and the emergent perovskite/hole (or electron) transport layer on device performance as well as photo-stability.

Los Alamos National laboratory (LANL) developed an efficient growth procedure for 3D halide perovskites in inverted perovskite cell architecture using PEDOT-PSS as a p-type hole transporting material (HTM) [4]. The initial collaboration between FOTON/ISCR and LANL led to the observation of a reversible self-healing mechanism under light soaking [5] and showed that the aging of the precursor solution plays a role in the nucleation of the perovskite crystallites [6]. In this study, we show that growth of methylammonium lead perovskites (MAPbI3) on nickel oxide (NiO) HTM, results in the formation of ordered and crystalline thin-films with enhanced crystallinity, leading to characteristic XRD Bragg peak width reminiscent of exclusively observed in the tetragonal phase in single-crystals. Photo-physical and interface sensitive measurements reveal a reduced trap density at the MAPbI3 perovskite/NiO interface in comparison with perovskites grown on PEDOT: PSS. Photovoltaic cells exhibit a high open circuit voltage (1.12 V), indicating a near-ideal energy band-alignment. Moreover, we observe photo-stability of photovoltaic devices up to 10-Suns, which is a direct result of the enhanced crystallinity of perovskite thin-films on NiO. These results elucidate the critical role of the quality of the perovskite/HTL interface in rendering high-performance and photo-stable optoelectronic devices [7].


