SnO$_2$ nanoparticles as catalyst precursors for plasma-assisted VLS growth with controlled surface density

L. Dai1,2,3, M. Al-Ghazawi2, W. Chen2, M. Foldyna2, I. Maurin3, J. Alvarez1, J.P. Kleider1, J.L. Maurice2, T. Gacoin3 and P. Roca i Cabarrocas2

1 GeePs, CNRS, CentraleSupélec, Univ Paris-Sud, Sorbonne Universités-UPMC Univ Paris 06, Université Paris Saclay, 91192 Gif-sur-Yvette Cedex, France.
2 LPICM, CNRS, Ecole Polytechnique, Université Paris Saclay, 91128, Palaiseau, France.
3 LPMC, CNRS, Ecole Polytechnique, Université Paris Saclay, 91128, Palaiseau, France.

Email: letian.dai@geeps.centralesupelec.fr

Keywords: silicon nanowire, microcrystalline silicon, tin dioxide nanoparticles

Radial-junction (RJ) solar cells based on silicon nanowires (SiNWs) are currently being investigated and improved by several research groups around the world.1,3 Stable single RJ solar cells with efficiencies over 9% have already been demonstrated.2 In addition, there is room for the improvement, by combining different materials in tandem RJ Si NW solar cell structures, e.g. hydrogenated amorphous silicon (a-Si:H) and microcrystalline silicon (μc-Si:H) (see Fig. 1-a).

The current process for the fabrication of RJ solar cells implies the use of a thin metal layer of evaporated tin (Sn) and its exposure to a hydrogen plasma to form Sn droplets. The density of metal droplets must be optimized to achieve sufficient light trapping with the optimal NW density being in the range of 108 cm$^{-2}$.

In order to control the nanowire density, we have started to investigate the use of commercially available tin dioxide (SnO$_2$) nanoparticles (NPs) separated from a nanopowder as colloidal dispersions and further deposited onto the substrate with a controlled density. Different particle size distributions have been achieved by centrifugation and dilution processes. SnO$_2$ NPs have been reduced to metallic Sn droplets by the hydrogen plasma treatment (see Fig. 1-b). Silicon nanowire growth was achieved by VLS process using reduced Sn as the catalyst. Further investigations exploring the plasma conditions in order to obtain microcrystalline silicon onto SiNWs core in a PECVD chamber with SiH$_4$/H$_2$ gas precursors are being studied. The μc-Si:H has been deposited on SiNW and studied by SEM observation (see Fig. 1-c) and HR-TEM (see Fig. 1-d) techniques. In addition, we explore and optimize the quality of the intrinsic μc-Si:H material deposited directly on SiNWs for the use in single junction μc-Si:H solar cells.5

![Figure 1](image-url) Figure 1. (a) Illustrated schematic of tandem radial junction silicon nanowire solar cells; (b) Top view of SEM image of reduced Sn catalyst on silicon wafer; (c) SEM image of Si NW after μc-Si:H deposition; (d) HR-TEM image of core-shell structure of SiNW grown in <211> direction after μc-Si:H deposition.

Reference

5 We gratefully acknowledge financial support by the French National Research Agency within the SOLARIUM project N°ANR-14-CE05-0025.